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SUMMARY 

A new method for the calculation of mean flow quantities in 
a constant property turbulent boundary layer on a flat plate is 
developed.  In this method the friction coefficient and velocity 
profile are calculated from the relation between the shear, the 
sum of the molecular and eddy viscosity, and the velocity gradient, 
The shear distribution, experimentally obtained by previous 
investigators, is assumed to be fixed.  The eddy viscosity is 
obtained by Joining a distribution for the wall region to one 
for the outer region of the boundary layer.  Both distributions 
were calculated by previous investigators from measured flow 
quantities.  By use of the shear and eddy viscosity distributions 
the friction coefficient is calculated and agrees well with 
accepted values over the entire range of Reynolds number.  For 
large Reynolds numbers the logarithmic friction formula Is 
obtained. 

The velocity profile is calculated by the same method as 
the friction coefficient. The entire profile, from the wall to 
the outer edge, is calculated without using the concept of 
laminar sublayer, transition region, logarithmic region,,etc. 
The calculated velocity profile changes gradually from the 
laminar type at small Reynolds numbers to the turbulent type at 
larger Reynolds numbers.  For sufficiently large Reynolds numbers 
the logarithmic formula is obtained for one part of the velocity 
profile and the velocity defect formula for another part. 

The heat-transfer coefficient and non-dimensional tempera- 
ture profile for small temperature differences are calculated 
by the same method as the friction coefficient and velocity 
profile.  In these calculations the non-dimensional heat-transfer 
distribution,which must be known, is assumed to be the same as the 
non-dimensional shear distribution.  In addition to the Prandtl 
number, the ratio of the eddy thermal diffusivity to the eddy 
kinematic viscosity also appears.  This ratio is calculated from 
experimental data obtained by previous Investigators.  The calcu- 
lated ratio of local Stanton number to half the local friction 
coefficient is found to vary from about 1.22 at a Reynolds number 
of about 3.5 x 10 , based on the distance to the leading edge, 
to about 1.09 at a Reynolds number of 2.2 x 109.  The calculated 
non-dimensional temperature profiles differ slightly from the 
velocity profiles. 

Turbulent flow over a surface on which condensation or 
evaporation is occurring is treated by assuming that the rate of 
condensation or evaporation is small, that the Schmidt number is 
equal to the Prandtl number, and that the eddy diffusivity Is 
equal to the eddy thermal diffusivity.  The mass-transfer coef- 
ficient is then equal to the heat-transfer coefficient, and the 
non-dimensional concentration profile is the same as the non- 
dimensional temperature profile. 

1 
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INTRODUCTION 

The problem of calculating the friction coefficient and 
velocity distribution for a constant property turbulent boundary 
layer is an old one.  In a rigorous sense the problem is 
unsolved and will remain so until shear turbulence is understood 
better.  At present the friction coefficient is usually calculated 
from a formula designed to fit either experimental data or the 
logarithmic formula (refs. (1) and (2)).  The logarithmic 
formula is theoretically derived but contains two constants that 
must be found from experiment.  This formula can be derived in a 
number of ways, for example, by use of Prandtl's or von Karman's 
relations for the eddy viscosity or by Hillikan's method of 
overlap (ref. (1)). 

The analyses that lead to a logarithmic friction formula 
also result in the logarithmic velocity profile.  This velocity 
distribution agrees reasonably well with experiment over a portion 
of the boundary layer from near the edge of the laminar sublayer 
to about one-fifth of the boundary layer thickness from the wall. 
The region very close to the wall requires a separate treatment 
that gives the result that in this region the velocity is 
directly proportional to the distance from the wall.  The 
velocity profile must vary continuously from the linear to the 
logarithmic, but the variation is not obtainable from either the 
procedure that gives the linear profile or from that which 
yields the logarithmic profile.  A number of investigators have 
treated this problem (ref. (1)).  To calculate the velocity 
distribution thus requires that the boundary layer be divided 
into a number of regions.  This is true even if Cole's correla- 
tion of velocity profiles (ref. (D) is used.  A complete 
review and detailed discussion of the present knowledge of the 
constant property turbulent boundary layer on a flat plate is 
given in reference (1). 

In the present analysis the velocity profile and friction 
coefficient are obtained from the relation between the shear, 
the sum of the molecular and eddy viscosity, and the velocity 
gradient.  The shear distribution, experimentally obtained by 
previous investigators, is assumed to be fixed.  The eddy 
viscosity is obtained by Joining a distribution for the wall 
region to one for the outer region of the boundary laynr.  Both 
distributions were calculated by previous investigators from 
measured flow quantities.  By use of the shear and eddy viscosity 
distributions the friction coefficient is calculated and agrees 
well with accepted values over the entire range of Reynolds 
number.  For the limiting case of zero Reynolds number, the 
friction coefficient becomes almost equal to the exact Blasius 
value for laminar flow (ref. (2)).  At the other extreme, very 
large Reynolds number, the analytic expression for the logarithmic 
friction formula is obtained. 
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The velocity profile Is calculated by the same method as 
the friction coefficient.  Unlike the usual procedure, the entire 
profile from the wall to the outer edge is calculated without 
splitting the boundary layer in a more or less arbitrary manner 
into laminar sublayer, transition region, logarithmic region, 
etc.  The calculated velocity profile changes gradually from 
almost the exact Blasius laminar profile in the limit of zero 
Reynolds number to the turbulent type at larger Reynolds numbers. 

The heat-transfer coefficient and temperature profile for 
small temperature differences are calculated in a manner similar 
to that for the friction coefficient and velocity profile.  That 
is, instead of the relation between the local shear, the total 
viscosity, and the velocity gradient, there Is used the relation 
between the local heat transfer, the sum of the molecular and 
eddy conductivity, and the temperature gradient.  The Information 
required to calculate the eddy conductivity is obtained from the 
experimental data of reference (3).  The non-dimensional heat- 
transfer distribution across the boundary layer is assumed to 
be the same as the non-dimensional shear distribution. 

For small concentration of a foreign gas, for Schmidt 
number equal to Prandtl number, for eddy diffuslvlty equal to 
the eddy thermal diffuslvlty, and for the non-dimensional mass- 
transfer distribution across the boundary layer equal to the 
non-dimensional heat-transfer distribution, the concentration 
profile and mass-transfer coefficient can be obtained directly 
from the temperature profile and heat-transfer coefficient. 

ANALYSIS 

Friction Coefficient and Velocity Profile 

In laminar boundary layer flow the shear stress is related 
to the velocity gradient by the relation 

f-Z^-^y- (1) 
For turbulent flow, it is assumed that an eddy kinematic 
viscosity em can be found such that 

Equation (2) can be written as 

(2) 

T 

T  .x ■c 
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or,   for   constant  property  flow,    as 

^-6^ Z^r (3) 

From   (3)    it   follows that 

(4) 

Therefore 

%-*'r 
= f- 

T 

J 
O 

4- I (5) 

T 
To evaluate the integral in (5) , *fc      and -^      must be known 

from the wall to the outer edge of the boundary layer.  The 
ratio -£-  , shown in figure (1), was obtained from figure 7-13 
of reference (1); figure 7—13 gives the ratio of the measured 
turbulence shear stress to the wall shear stress.  Near ri ■ 0, 
the curve of -i,. was drawn slightly above the curve of figure 

e^r 

7-13   of   reference   (1)   in  order   to  agree  more   closely with   the 
experimental   points  shown   in  that  figure   and   also  to  allow   for 
the   viscous   shear   and   to give   the  slope   its required  value   of 
zero   at   the  wall.      In   figure  1   is  also  shown   the  ratio -X-    cal- 
culated  by Fediaevsky's method   (ref.    (4)).      In 

-r 

this method the 
ratio is  expressed   as  a fourth degree  polynomial   in   r| and 
the  coefficients,   which  depend  on the  value  of 

Tw 
and its 

derivatives at n - 0 and at n " 1, are evaluated by use of the 
boundary layer equation of motion.  Although Fediaevsky's 
distribution of jL  is not very far from the measured one, the 
measured one was used in the present analysis.  For a flat plate, 
Fediaevsky's method makes JL. a function of *i alone; the same 
assumption is made in this analysis. 

The ratio "JT  is obtained from reference (1).  The discus- 
sion on page 526 and the data of figure 7-41 of reference (1) 
indicate that very near the wall 

>* 

■u»/ 
:; 
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or 

i*,} = f (^) (6) 

Relation (6) is universal under the assumption that the portion 
of the velocity boundary layer very near the wall can be com- 
pletely described by the quantities u, em> p, \i,   TW, and y. 

Further from the wall, the discussion on page 493 and the 
data in figure 7-17 of reference (1) indicate that 

^„T -Un) (7) 

Because this relation does not contain the viscosity, it 
probably applies only at large Reynolds numbers.  At small 
Reynolds numbers, ^a is probably a function of Reg in addition 
to r\, u,r 

Because (6) applies only near the wall and (7) applies 
only further out, (5) is written as 

i^V / 

(8) 

where r^ is the smallest value of i for which (7) applies.  For 
^ < ^it ^d  depends on y. instead of on ru  Consequently, the 

first integral in (8) is written as 

Al iisl 
/ +JJ, ^ 

where 

and J4 
-   ^»y _ -   7 /?ef (9) 

and %tl ■=.   ^-7?^ 
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The notation 

function  of 

T- [^eJ      Points   out   that -^    is   assumed   to  be   a 

4^ near the wall as well as further out. 
Equation (8) then becomes 

W -£*—d 
-Y^. 

Y+ -Ke 
+ Ke^ 1 (10) 

The function f2(,n) was obtained directly from the faired 
curve in figure 7-17 of reference (1) and is shown in figure 2. 
The function fi(y+) was obtained from figures 7-16 and 7-41 of 
reference (1) and is shown in figure 3.  The points are the data 
points of figures 7-16 and 7-41 of reference (1).  For 15 < y+ < 52, 
the curve of fj in figure 3 is a slightly adjusted version of the 
curve of figure 7-16 of reference (1).  The data of reference (1) 
do not indicate an upper limit to the rising portion of f^.  In 
the present analysis, however, fj^ Is postulated to have the 
constant value .393 for a range of y+ > 52 if Ref is sufficiently 
large.  The function f^ is postulated to have this constant 
portion because if, at a sufficiently large value of Ref, f2 is 
plotted against y+ by use of (9) and the identity 

u»y uuF \ 
(ii) 

the portion of f2 for n less than about .06 in figure 2 with a 
slope of .393 lies on the line ^/U./ - .393 in figure 3.  Therefore, 
fim/u.y would be double valued for y+ > 52 unless fj either did 
not extend beyond y+ - 52 or were equal to f2 beyond y+ - 52.  By 
taking f^ - .393 for y+ > 52, it is not necessary to limit the 
range of fi by the fixed number 52,  Moreover, making fj extend 
beyond y+ - 52 necessitates that f2 ■ Kri In the region of the 
boundary layer in which f^ and f2 apply simultaneously.  Thus, 
from (6) it follows that 

&-lW*) 
Therefore, where (6) and (7) are both valid it is necessary that 

m)=K 
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and 

■£60= K^   (K^3 93) (12) 

At high Reynolds numbers the upper limit of f^ is 
to be the largest value of y+ for which f^ = K, th 
about .06 Ref. 

thus postulated 
at is, at 

The lower 
from f2('n) by 
values of &*. 
extension of f 
calculating ^j 
of y+ at the i 
When there is 
^L  .  The cu 

of a Reynolds 
intersect for 
curve for Ref 
Here, fi and f 
are so low tha 

limit m for ±2 is found by first c 
(11) and then, by use of (9), plotti 
together with fi as shown in figure 

2 down to y+ .= 0 is merely for the p 
When fj^ and f2 intersect at y+ < 

ntersection is y+ j.  Equation (9) t 
no intersection at y+ < 52, y+,l is 
rve of f2 for Ref = 2960 in figure 4 

number that is so large that fi and 
y+ < 52.  Therefore, 52 is used for 
■■ 200 shows the behavior at a low Re 
2 intersect at y+ < 52.  When the Re 
t y+ l < 52, then y+ i   depends on Re 

alculating ij-s 
ng these 
4.  The 

urpose of 
52, the value 
hen gives nj. 
52 and n^ is 
is an example 

f2 do not 
y+il.  The 
ynolds number, 
ynolds numbers 
f • 

By use of figures 1, 2, and 3, and t 
y+ i and r^, the value of Cf/2 was calcul 
values of Ref. The values of y+ i and nj 
values of fi and f2 for the three values 
is less than 52 are given in Table I. In 
the values of Cf/2 and Re5, The value of 
namely .037-4, is almost the same as the v 
reference (1). In figure 5 the calculate 
compared with those obtained by use of th 
profile and given in Table 21.1 of refere 
is good over the entire range of Ref. It 
that because (7) does not contain the vis 
valid only at large Reynolds numbers. At 
the function fn Is probably somewhat diff 
in figure 2 with the result that Cf/2 is 
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his method for 
ated from (10) 
and the corre 

of Ref for whi 
Table II are 
-TfCf/2 for Re 

alue .037 give 
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coslty, it is p 
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erent from tha 
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finding 
for six 

sponding 
ch y+,1 
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n in 
/2 are 
velocity 
agreement 
ever, 
robably 
s numbers 
t shown 
different 

for 
The velocity profile is obtained by solving equation (3) 

and Integrating between 0 and r\.     Thus, 

(13) 
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For   the  same  reason  that   (5)   was  written   as   (8),   (13)   Is written 
as n V T 

M^/TTU^ 
for y+ < y+ i  and as 

(15) 

for T| > r\i.     The velocity profiles, 4)('n)t are tabulated in Table 
III and shown in figure 6 for the six values of Ref for which 
Cf/2 was calculated.  Because there is a unique relation between 
Re* and Cf/2, it follows that the velocity profile is uniquely 
related to Cf/2.  Included in Table III and figure 6 is the 
profile for laminar flow.  This profile was calculated by using 
the same JL- distribution as for turbulent flow, that shown in 

figure 1, and by putting —J11   equal to zero in equation (5) to get 

This result was then used in (13) to get 

(17) 

The   velocity profiles  in figure   6  show  a  gradual  change   from  the 
laminar  to the   turbulent  type  as  Ref   increases. 

Note   that both   the   friction  coefficient   and velocity profile 
become exactly those for   laminar   flow when the   Reynolds   number 
becomes  zero. Thus,   ia     in   (5)   and   (13)   can   be  written   as 
/ €r« \ fcx   'i? ^    .     Then,   as  Re*  decreases  to zero £^ also 
(üTrjll-r-   ^r *^ 
decreases   to zero because  the  friction Reynolds number,   ]ICf/2  Re*, 
is  zero for Re* equal  to zero.     Equations   (5)   and   (13)   then 
become  (16)   and   (17),   respectively,   the  equations  for   laminar 
flow. 

In figure  7  all  the  velocity profiles of   figure 6  except 
the   laminar one  are  shown  in  the  form u+   against  y+.     The relation 
between u+ and 4> is 

^ — rar- da) 
8 
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and the relation between y+ and ri is given by (9).  Each velocity 
profile has a straight line portion that lies on the single line 
which is fitted by the equation 

U.+.-  2.-54 \n y+ ■+- 5.8 9 
Each velocity profile leaves this line at a sufficiently large 
value of u+.  Calculations indicate that this occurs when ct> 
exceeds about .75. 

The profile for Re^ = 25 lies markedly below all the others. 
The reason is that 25 is so small a value of Ref that large 
values of n occur for small values of y+ (see eq. (9)).  Conse- 
quently, _t      ,   which is assumed to depend on n alone, is smaller 

over the range of integration in (15) than it is for larger value: 
of Ref.  For example, at y+ =• 12.2, which is y+ \   in this case, 
v,  is large enough for f - to equal .600, a value appreciably less 

than unity.  As a result u+ is small over the entire boundary 
layer and its maximum value is only 9.31. 

In figure 7 are also shown Klebanoff's data for Ref - 2960 
from figure 21 of reference (5).  Klebanoff's data differ 
slightly from the curve of the present analysis for values of 
y+ between about 20 and 120.  If the curve of f^ of reference 
(1) had been used without refairing it, better agreement would 
have been obtained with Klebanoff's data. 

In figu 
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re i  are shown the 
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is the curve f 

reference (1) ; this curve Is a mean throu Rh ex 
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used to construct the curve of figure 7-4 

ose 
of 

f 
r 

comparisons with experiment in figures 7 and 
calculated profile probably differs slightly 
one at the same friction Reynolds number. 

i 
t 

ty profiles in the 
rom figure 7-4 of 

perimental data. 
velocity profiles 

es of Ref but not 
lest Reynolds 
or which data were 
eference (1).  The 
indicate that a 

rom an experimental 

_« From the computed velocity profiles the quantities -y-  and 
—£- were calculated numerically from their definitions, namely, 

and 

The ratio   was calculated from e i^^^J 
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d 
These quantities are given in Table IV.  By use of "y  , the 
value of Req, a more convenient quantity than Reg or Ref, was 
calculated for each value of Ref for which Cf/2 was computed. 
These values of Req are given in Table IV and the dependence of 
Cf/2 on Reo is shown in figure 9. 

When Cf/2 is known as a function of Reo, the dependence of 
Cf/2 and of Cp on Rex can be calculated.  The procedure is to 
use the boundary layer momentum equation in the form 

which, upon Integration, gives 
-Tee 

(19) 

1?« 6rZi & Ce = c-o) (20) 

The relation 

is also used. 

(21) 

To calculate Rex from (20), Cf/2 must be known as a function 
of Reo for small values of ROQ.  In the present analysis the 
turbulent boundary layer gradually becomes laminar as Req 
approaches zero so that it is unnecessary to assume either a 
turbulent boundary layer at the leading edge or a transition 
position.  In order to use (20), Cf/2 was extrapolated from its 
value at Req equal to 27.7 down to zero by fitting the equation 

it * -*?: 
to  the values of Cf/2 at Req - 27.7 and 191 (see Tables II and 
IV).  It was found that k0 - .0789 and n0 - .5785.  For Req - 100 
equation (20) then gives Rex - 11,530 and equation (21) gives 
Cp - .01735.  Although k0 and n0 should aporoach their laminar 
values, namely, .2205 and 1, instead of remaining fixed as Req 
becomes zero, it can be shown that at Req - 100 the error in Rex 
caused by keeping k0 and n0 fixed is no larger than 2 percent. 
The percentage error in Rex and Cp decreases as Req increases. 
For values of Req larger than 100, equation (20) was integrated 
numerically by use of figure 9.  In figure 10 is shown the 
calculated dependence of Cp on Rex; also shown is the dependence 
of Cp on Rex predicted by the Prandtl-Schlichting and Schultz- 
Grunow formulas (ref. (2)).  The agreement is good. 

10 
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In figure 11 is shown the connection between Reg and Rex 
calculated by use of (20).  Figure 11 is given because it 
enables quantities known as a function of Reo to be easily 
obtained as a function of Rex and vice versa.  Thus, from this 
figure and figure 9 the dependence of Cf/2 on Rex can be found. 

Heat-Transfer Coefficient and Temperature Profile 

The heat-transfer coefficient and temperature profile are 
calculated in the same way as the friction coefficient and 
velocity profile.  The expression for the heat transfer by 
conduction in a direction normal to the wall in a laminar flow 
is 

S = - K |j (22) 

It Is assumed that an eddy thermal dlffusivity exists that allows 
the beat transfer in a turbulent flow to be written as 

^ -(K+^Cp ■ST o 
Equation (23) can be written as 

•ST ^-^miWt] 

(23) 

(24) 

After defining a non-dimensional temperature t by 

introducing a temperature boundary-layer thickness 6T, and 
dividing by qw, (24) becomes 

where nj. - 

^-^H^feXl (25) 

After introduction of the Stanton number 

equation (25) becomes 

c = 1-.   „- 
*    pUe'pCTe-T«') 

J_ - 
U      st^s(Z)K L l+(i W£> ^1 

11 

(26) 
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From (26) it follows that 

dn-r 

m(ty (27) 

or 

-V^x^r 

_1- 
1w 

feTf^' 
d 

(28) 

Lo-fc ^ the ratio "^ must 
no measurements of 

Before (28) can be used to calculate 
be known as a function of rrr.     Unlike — 
-L-     on a plate could be found.  Consequently, to obtain an 

approximate distribution of "a" , the Fediaevsky method for 
T ^ getting rj- was used to investigate the dependence of -^  on np. 

This method gave a reasonable approximation to %-     (see fig. 1). 

Two conditions to evaluate the fourth degree polynomial of 
Fediaevsky's method are 

■?-« i   ^  y«ö 
and . 

Also, from the energy equation, 

f a 
2g. 4- f 

■^e 

and the conditions, vw 

Moreover, for/*°-j - 0, 

3y 

- 0 and(||-L- 0' 
(?9) 

äV\ J  *_ 
i,ion et 

it follows that both 

O   a+-  /= O . 

— of is 

These 
Conseq 

the condition et y 

five conditions on y^ are exactly th*> same as on  TW 

uently, if -i  and  _!. are approximated by fourth deeree 

polynomials -4- is exactly the same function of »>p as -=- is of 
r\.  Therefore, the relation between -3— and ^ is asRumed to h« 

TW   T 
the same as the experimental one between ^f^ snd •),  Actually, 
however, -3-   depends slightly on the Prandtl number (see fig. 
7-55, ref .*(!)). 
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In figure 11 Is shown the connection between Reg and Rex 
calculated by use of (20).  Figure 11 Is given because it 
enables quantities known as a function of Ree\  to be easily 
obtained as a function of Rex and vice versa.  Thus, from this 
figure and figure 9 the dependence of Cf/2 on Rex can be found. 

Heat-Transfer Coefficient and Temperature Profile 

The heat-transfer coefficient and temperature profile are 
calculated in the same way as the friction coefficient and 
velocity profile.  The expression for the heat transfer by 
conduction in a direction normal to the wall in a laminar flow 
is 

(22) 

It is assumed that an eddy thermal diffusivity exists that allows 
the heat transfer in a turbulent flow to be written as 

■ST 

Equation (23) can be written as 

-^T 
i--4K%9(fe>l^ 

(23) 

(24) 

After defining a non-dimensional temperature t by 
-T--"nv 
"Te —TVA/ 

) 

introducing a temperature boundary-layer thickness 6T, and 
dividing by qw> (24) becomes 

^---^H^fe> ^ T 
(25) 

where ^  mJlL   .  After introduction of the Stanton number 

equation (25) becomes * 

i 
V^^jF.U4-^^^ 

6y*\/£b 

11 

(26) 
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From   (26)   it  follows  that 

(27) 

or 

«V^erTr 

_1- 

i^feTfey- 
A 

(28) 

Before (28) can be used to calculate St 
iown as a function of nv.     Unlike -2-  i i 

the ratio TfJ must 
be known as a function of nr.  Unlike -5-  , no measurfitnents of 

-i_  on a plate could be found.  Consequently, to obtain an 
ivw ß 

approximate distribution of  q  , the Fediaevsky method for 

getting -^- was used to investigate the dependence of TJ^ on *>p. 
This method gave a reasonable approximation to 3L  (see fig. 1). 

Two conditions to evaluate the fourth degree polynomial of 
Fediaevsky's method are 

-4- ~ \    •+•   y «■ o 
and 

Also, from the energy equation. 

Y 

y = r7 

f a 
^E 4- f 

^E 

2>x      ^      ^y 

and the conditions, vw - 0 and(—-j 

(29) 

-   0. 

t.y\ci 

Moreover,   for/^E_j  -  0,   the  condition   nt  y ■  6T   is 

it   follows   that   both 

:0        a+-      /= O    . 

1 
These five conditions on "^ are exactly th*» same as on ■ 
Consequently, if -i  and  _3- are approximated by fourth d 

polynomials •*• is exactly the same function of t^   as -^r- is of 

T 

«erep 

n.  Therefore, the relation between J- and »vr is assumpd to be 

the same as the experimental one between "fc and ■n.  Actually, 
however, -3-   depends slightly on the Prandtl number (see fig. 
7-55, ref. (D). 
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The Prandtl number also affects the ratio ■*?  in equation 
(2i).  Thus, for laminar flow over a flat plate 

-|L = -pv*   O 5Z3 ref.z) 
For Pr = .738, the value used in the present analysis, this 
relation gives 1.106 for JtZ   .     For turbulent flow 5j  is 

" r 
probably smaller and so, as an allowable approximation, is 
taken as unity.  Equation (2i)    then becomes 

For  reasons given in the section, "Friction Coefficient and 
Velocity Profiles," (30) is written as   , 

ry+,2. r   _^ 

'o 
The values y+ 2 

and ^2 are permitted to differ from y+ \   and ^x. 

To find the ratio of the eddy thermal diffusivity to the 
eddy kinematic viscosity, 4^  , the pipe flow data of reference 

fe»v> 6Ü 
(3) were used.  First, the values of jjjp. given in reference (3) 

for five Reynolds numbers at each of twelve values of y/r were 
averaged.  This was allowable because there was no consistent 
effect of Reynolds number on ^- at, the twelve stations.  A 

smooth curve of ^J. against y/r was then drawn through these 

average values located at the twelve values of y/r.  Then a 
curve of .is» for pipe flow was obtained by first averaging 

Uof" 
Laufer's and Nunner's data given in figure 7-39 of reference (1) 
at each of \  values of y/r and then drawing a smooth curve 
through the average values.  Laufer's and Nunner's data are the 
same from the wall to the position of the maximum in ■§£! but 

Laufer's data are slightly higher beyond this point.  Although 
Ref is estimated to be about 6.3 x 103 for Laufer's data and 
about 6.6 x 10^ for Nunner's data, a ratio of about 9.5, it is 
not certain that this is the reason for the difference.  At 
each value of y/6 or y/r, the ratio  (4S?k-)/r4f?-) was then 

calculated with the help of figure 2.  This ratio was calculated 
because the eddy kinematic viscosity approaches zero at the 
outer edge of a boundary layer, whereas, it does not at the 
center of a pipe.  The ratio^^^ //<£mA  was plotted against 

y/6 and a smooth curve drawn through the plotted values.  The 
assumption was then made that a change in flow from pipe to 

13 



NOLTR 63-77 

plate has the same effect on c^ as it does on *;m.  Therefore, rr^i. 
was obtained by multiplying the ordinates of the curve for ^w. * 
obtained from the pipe flow data of reference (3) by/£»\/'€>^

r 

The variation of t       with y/6 for plat«» flow was then calculated 
and is shown in figure 12.  For r\ £  «06,-j^ is taken as unity. 

This means that -S^ is assumed to be f2('n) for r\ <  .06 with the 
result that CuS" 

6h 
Consequently, [j^y 

-^=.395^   C^i.o6} 

just as u.y has. 

as a function of y+ has a horizontal portion 

For Near the wall the proper variable is y+ instead of r|. 
this region the data of references (6) and (7) for flow of air 
in a channel were used to obtain the connection between .ih  and 

y+.  The values of [^y and y+ were calculated by using p - 22 
x 10~4 slugs per cubic foot and v - 1.8 x 10""4 square feet per 
second.  The results are shown in figure 13 for the entire 
range of y. from the wall to the center line of the channel. 
Where ip^ Is a function of y+ the data fall almost on fi, except 

perhaps between about 3 and 17 where the ^A data lie somewhat 
below fi.  The agreement between these —;    data and fi is 

believed to ^e sufficiently close to fallow f^ to represent ^i 
as well as is This means that Jb» 

u.y 6m 
where the distance variable is y+ Instead of n 

1 near the wall 

The value of y+ 2  »nd  the corresponding value of ri2 In (31) 
are calculated In the same way as y+ 1  and n]..  To do this, 
figures 2 and 12 are used to calculate /.ia W €h \   as a 

function of y+ by use of (9) and (11).  The value of y+ at which 
f £w\ \f  6K\     equals fi is then found.  Below this value of 
Vu\.yA 6r*J £K 
y+> called y+^'üiy 

ls represented by fj; above y+f2 figures 

2 and 12 are used to get (jJ"|yX "i—J   a9 a functlon of ri.  In 
Table V are given the values of y+ 2 and ^2 for the three values 
of Ref for which y+ 2 Is less than'52. 

The data in figure 13 indicate that the assumption that 
there is a quantity y+^i or y+ 2 seems to be correct.  The method 
for the calculation or'y+ i O^'y* 2 also appears correct.  That 
is, the data show that below the Intersection of  ^h  £.(•;) with 

14 
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6u €u 
fl(y+), -jj^y depends on y+. Above the intersection, ^y  depends 
on y+ and on Ref.  That is, above the intersection the variable 
is gh  and it depends on n. As expected, there is a smooth 

and -ZZ f2 rather than the corner that transition between fj 

results in the present method for finding y+,1 and y, 2-  Fo 
264, the experimental data leave fj cloie to t 

For 
Re* - 150 an<i 264, the experimental data leave fi clo&e   to the 
calculated value of y+ 2«  

For Ref " 701, there is an appreciable 
difference.  Above y+ 2 

the calculated curves for all three 
values of Ref are below the experimental data.  Because the 
calculated curves are for flow over a plate whereas the points 
are for a channel, some difference is to be expected.  Thus, 
although the value of ^0-     for a plate approaches zero at the tA*7 € h outer edge of the boundary layer, the va je  * -0^7 for a chan- 
nel is not zero at the center line.  This i.   y the dashed 
cu 0 at y+ - r ;f, but the rves in figure 13 go through =h- 
points do not.  For y+ 1 < y+ < Ref, but not close to y+ - Ref, 
only a small part of tiie  difference between the curves and the 
data points can be removed by multiplying ^w, for plate flow by 

fJSL.)/(**.) ** 
the reciprocal of the ratio ^Uvr//^u* cy  that was used to 
convert the pipe f low/£ij\data of reference (3) to plate flow 

rh. data.  The reason for the remaining difference is not clear 

at present. 

By use of equation (31), the function t\,   figures 2 and 12, 
and the method for finding y+,2. the local Stanton number, St, 
was calculated for the five values of Ref listed in Table I. 
The results are given in Table VI and also shown in figure 9 as 
a function of Req.  Also given in Table VI and figure 14 are the 
values of the ratio Z5i: 

ZSr       c* 
The ratio -g— was calculated by noting that from the 

definition of S-p and of St it follows that 
'"Re* 

Sr   = I 

or 

"Re, 

JT - -Hex 

(32) 

d'Re, 
a i^4 (33) 

15 
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Upon the use of (19) and (21), (33) becomes 
'"St© 

ZS'. i zSt 
K e© 

di^ e© (34) 

For  0 < Re^  < 100,   the  ratio ^St  was expressed  in  an   analytic 
Ct 

form  by   assuming  that 

«St- 
"Re 

(35) 

The constants kj and nj were determined from the values of S^ 
for Reg equal to 27.7 and 191 (see Table VI) and were found to 
equal .109 and .601, respectively.  When the results for k0 and 
n0 are used, the expression for Z$t.  for Re^ < 100 becomes 

(36) 

Equation (36) was used with (34) to obtain ^f^ - 1.274 for 
Reg - 100.  For values of Rep larger than 100, "^ was calcu- 
lated by numerical integration by use of (34) and figure (14). 
The result is shown In figure (14). 

The temperature profiles were calculated by putting "y* - 1, 
solving (26) for A*      ,   and integrating between 0 and 1%  Thus, 

■fcs ^-R-.Pr I- . Tzxrzrrz Ar) o?) 

or 
^ 

(38) 

'o 7a. 
The temperature profiles calculated by use of (38) are shown In 
figure 15 and tabulated In Table VII.  Also shown is the tempera- 
ture profile for laminar flow.  This profile is obtained by 
lettlng/§«.)- 0 and A.   »   X.    in   (37).  The result is 

•t  = ^-Reg-TV j ^^ 
or, after using (17) 0 

±  = 

nits xet 

4> (39) 

16 
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From   (30)   with 
that W '{jw and/-^3! - 0, and from (16) it follows 

Therefore, from (39) t 4» .  That is, the present method 
predicts that for laminar flow the velocity and temperature 
profiles are the same. 

Mass-Transfer Coefficient and Concentration Profile 

The mass-transfer coefficient and concentration profile 
are calculated in the same way as the heat-transfer coefficient 
and temperature profile.  For a binary mixture in laminar flow 
the mass transfer by diffusion in the direction normal to the 
..ii i«, ^   ■ac^ 

where the contribution of y  "sy    is assumed to be negligible. 
For turbulent flow it is assumed that an eddy diffusivity exists 
such that 

After introduction of the Schmidt number /U.  , and the quantity 

equation (41) becomes 
C,» —^u 

fS>*A, 

--^[K^iKl 
Cic-Cxv/  <^ £ 

(42) 

In the same way as in the section concerning heat transfer, it 
is assumed here that the concentration boundary layer thickness 
differs from the velocity boundary layer thickness by less than 
10 percent and that it is thus permissible to take the two 
thicknesses equal. 

When (42) is divided through by mi w and the mass-transfer 
coefficient 

c     -* 'I ft/ 

is introduced, the result is /3"tCCie~C'w) 

yn I* cb-.K^J 21. n 

(43) 

(44) 

From (44) it follows that 

**l*S 

t-'**5-i^mgm (45) 

17 
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or 

•*»»y^ 

c^Ä=   i^®S&  X (46) 
-r~c 

rrtv Information concerning .—i- as a function of r| is obtained 
by noting that 

and 

Vfti    __    I a-  y^o 

Moreover,   from the  diffusion equation 

P U ** ■hi äy (47) 

it follows that m^o 
- 0, when the diffusion velocity is small enough for vw 

If, in addition, (-—•) - 0 and(2-ij . o, then also 

and 

Because these boundary conditions are the same as those for -r— , 
it is assumed that the non-dimensional concentration distribution 
is the same as the non-dimensional heat-transfer distribution. 
It is also assumed that |i. - 1 and that Sc - Pr.  From these 
assumptions it follows that      _ cm-st 

Moreover, the non-dimensional concentration profile is then 
also the same as the non-dimensional temperature profile.  If 
either si-   / 1 or Sc^Pr, the method used to calculate the heat 
transfer coefficient and temperature profile can be used to 
calculate the mass-transfer coefficient and concentration profile. 

DISCUSSION 

Friction Coefficient and Velocity Profile 

One of the methods for obtaining the logarithmic friction 
formula and velocity profile is Millikan's method of overlap. 

18 



NOLTR   63-77 

In this method   it  is   shown  that   if  there   is   a region  of   the 
boundary   layer   in which 

and 

are both valid, then th* fiiction formula is the logarithmic one 
and the velocity profile is logarithmic in the region of overlap. 

In the present analysis the logarithmic friction formula 
and velocity profile also follow from an overlap condition. 
Here, however, the condition is on the eddy kinematic viscosity 
instead of on velocity profile functions.  Thus, to obtain a 
friction formula for large Reynolds numbers equation (10) is 
used.  For large Reynolds numbers 

V^i = ^ 

ll- 

and 

The value of r^ is thus very small.  Consequently, x*,     is almost 
unity for y+ < 52.  Moreover, the indication from figure 1 is 
that -^r  is practically unity for T| less than about .01.  In 
addition, for large enough values, of Ref, equation (12) applies 

*! that begins at xfr^ and extends outward at for a 
least 

range of 
as far  as 

Si. 
.01. 

a-=     jit 

Equation (10) then becomes 

T?, 
Üfc- 

-f- K i\T?^ (48) 

• •     w 8»!. '"> 
For large Re^ the quantity (1 + Reff2) In the last term of (48) 
is almost equal to Re^fq except very close to r| - 1.  For 
example, at Ref - 5 x 105, Reff2 " 1965 at m - .01.  It then 
increases to about 34,000 at ri 
Ti - 1; at ri - ,98, however, it 
Reynolds numbers the last term 

-   .31 and decreases to zero at 
is equal to 850.  For large 
in (48) can be written as 

r i 

h -ä H-T?^ J n.-Fftf^  1 
i-^. 

where (1-A) is the upper limit 
is much larger than unity.  As 

7?«/ 
/• 
i-^ 

of the range of *  in which Reff2 
Ref Increases, A decreases and 

19 
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becomes negligible.  For large Ref the last term In (48) is then 
approximately independent of Ref.  Its value is 14.27«  The first 
term in (48) has the value 13.94,  When these two numerical 
values are used and the second term of (48) is integrated 
analytically, the result is 

I 

f? = 28.ZI  + -^|nCn-.o,K-Kef)--JrU(l+S2K")  («) 

For large Reynolds numbers 

Equation (49) then becomes 

I    _ w — 2.5-4. lyni*+  4-^.31   ^K=.-595J (50) 

Note that the logarithmic form requires only that there be a 
region of the boundary layer, no matter how small, in which (12) 
and 4£- " 1 are both valid. 

Equation (50) has the form of von Karman's friction formula 
(ref. (8)).  Although (50) was derived for very large Reynolds 
numbers the value of Cf/2  obtained from it differs from the value 
given in Table II by less than 2 percent for Ref - 2960. 

By writing (50) in the form 

J^-  - 2.S4 lo/?Kee4-Z^UX .+.^1 

and using the value of "gT  for Ref - 5 x 10° from Table IV, 
there is obtained the relation 

(51) 

* 

The value of Cf/2 obtained from (51) differs from that In Table II 
by almost 7 percent for Ref «2960.  Equation (51) has larger 
errors than (50) at small Reynolds numbers because the ratio M 
depends on Reynolds number (see Table IV) and the value of (■§-] 
for Ref - 5 x 105 was used to get (51).  Because formulas of the 
logarithmic type are Inconvenient for computation, it is usually 
better either to use the curves of figures 9 or 10 or convenient 
approximations. 
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The friction coefficient was calculated for turbul 
over the entire range of Reynolds number by use of the 
dimensional shear distribution shown in figure 1,  The 
ment between the friction coefficient calculated by the 
method and the accepted friction coefficient (see figs. 
indicates that the non-dimensional shear distribution i 
mately independent of Reynolds number.  Moreover, when 
of i. is calculated for the laminar velocity profile, a 
substituted into (16), the result is 

the exact one 

- ili^ 
7?ee 

Because (52) was obtained 
as was used for turbulent f 

£f =. 
This expression differs 

2. 
from 

by less than 2 1/2 percent, 
the same shear distribution une same snear aisirioui. ion as was usea lor xurouient I 
inference is that the non-dimensional shear distributio 
flat plate is approximately the same for laminar as for 
flow.  Fediaevsky's method (ref. (4)) predicts them to 

ent flow 
one non- 
good agree- 
present 
5 and 10) 

s approxi- 
the value 
nd 

(52) 

(53) 

by use of 
low, the 
n on a 
turbulent 

be identical 

In contrast to 
files are calculated 
approaches, each yle 
present analysis cal 
approach.  Moreover, 
results that are pre 
very close to the wa 
.X  * 1.  Then (14) 
TV/ 

or 

the usual method in which the velocity pro- 
by patching the results of a number of 
Iding a portion of the velocity profile, the 
culates the entire velocity profile by one 
the present method yields many of the 

sently accepted.  For example, in the replon 
11 equation (14) applies, 
becomes 

Ja 

Here f, « 1 and 

u.+ = y+ (54) 

This is the well-known velocity profile of the laminar sublayer 
(ref. (D). 

From equations (1) and (2) it follows that the ratio of the 
turbulent shear, pg^li^ , to the lajninar shear, ^u. ^r  » is TJ

1
 : 

or y+f]..  The value of unity for this ratio has often been sug- 
gested as a criterion for the edge of the laminar sublayer.  By 
use of figure 3 it is found that this ratio is equal to unity 
when y+ is about 9.9, a value in the range of accepted values 
for the outer edge of the laminar sublayer. 

X 
For somewhat larger values of y+ the ratio T*/  is still 

approximately equal to unity if Re^ is sufficiently large. 
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Then (14) becomes 

or 

U, = ^) (55) 

Equation (55) is the law of the wall (ref. (1)).  Its upper 
limit is either the upper limit for fj or for T  'S*1, whichever 
value of y+ is smaller. "^ 

When Re- is large enough for a region of overlap to exist, 
equation (12) is valid for a range of r\  whose upper limit is 
near .06 (see figure 2).  Equation (15) then becomes 

For large enough Ref the range in which x/r^      is almost unity 
extends from the wall to a value of n greater than *^, .  Thus, 
at r) - .06, which is greater than *%«. when Ref is large, *^ - 
.992.  Therefore, take -i. 

4 = ^ 
.S3. 

ii 
1 in (56>. 

/ +*^f 
er 

K^ % 

Then (56) becomes 

i-i 

or 

The smallest value of (1 + K^Ref) is (1 + 52K).  But In (1 + 52K) 
differs from In 52K by less than one percent for K - .393. 
Consequently, (57) can be written as 

or as 

U.+— 2. S'4\*'i -h Z.S-4  U^e^ -f-3.0 5 

Equation (58) is the logarithmic profile. 
S^i^J 

(58) 
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Equation (58) was obtained by requiring that  "X,  * 1 and 
that (12) both apply.  Consequently, it would seem that the 
profile should not be logarithmic for n 5^ .06 or so; n - .06 Is 
roughly the upper limit for (12).  When, however, (9) is used 
with figure 7 it is found that the velocity profiles do not 
differ noticeably from the logarithmic profile unless r| is much 
larger than .06.  For example, the values of r\  for departure from 
the logarithmic profile vary from about .17 for Ref - 2960 to 
about .20 for Ref - 5 x 105.  For Ref equal to 200 there appears 
to be very little, if any, logarithmic portion in figure 7; the 
lower values of Rej definitely have none.  The velocity profiles 
thus have a logarithmic appearing portion for values of r\  larger 
than a strict application of the requirements indicate.  The 
reason for this behavior is probably the slow decrease of Sn, 
from Kr\   (see fig. 2) combined with the slow decrease of X "■**" 
from unity for ri less than about ,2 (see fig. 1) . TS 

As the Reynolds number decreases, the value of T^, which 
for large Reynolds numbers is equal to äi.    , increases.  The 
increase in -n^ decreases the range of ri for which (12) is valid 
and, as a result, decreases the extent of the logarithmic portion 
of the velocity profile.  If the upper limit of (12) is taken at 
r| - .06 (see fig« 2), there will be no logarithmic portion of the 
velocity profile when Ref becomes less than 867.  At this value 
of Ref, r\i  exceeds .06.  The value 867 for Ref corresponds to a 
value of 2000 for Req.  Note that the lower limit for the loga- 
rithmic velocity profile is also the lower limit for the loga- 
rithmic friction formula, equation (50). 

Although, strictly speaking, there is no logarithmic portion 
of the velocity profile for Ref < 867, the discussion concerning 
the extent of the logarithmic profile indicated that according 
to figure 7 a velocity profile has a logarithmic appearing 
portion down to Ref In the neighborhood of 200.  For Ref - 200, 
Reg is about 450.  Preston (ref. (9)) took the lower edge of the 
logarithmic portion of the profile at y+ - 30 and the upper edge 
at n - .20 and found that the extent of the logarithmic portion 
shrank to zero at Ref - 150.  From this value, Preston obtained 
389 for the value of Re^ below which there is no logarithmic 
portion of the velocity profile,.  From figure 3 it seems that 30 
is too small a value of y+ for the logarithmic profile to hold. 
Here again, however, the velocity profile departs slowly from 
the logarithmic type (see also ref. (10)) so that It has the 
logarithmic appearance for smaller values of y+ than is to be 
expected. 

Beyond the logarithmic portion of the velocity profile lies 
the region of the velocity defect formula (ref. (1)). To obtain 
this formula from the present analysis, equation (15) is written 
for n — 1, thus, 
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Sf r -f. / TU/ , 

1 
When (15) Is subtracted from (59), the result Is 

A' £ 
■■riT^r^ 

or 

1-4, 

T?^ 
= 1?* 

Tw 

"f J  14-^e/x d>l 

(59) 

(60) 

Although "^ and f2 are taken to be functions of n alone, the 
Indication from (60) is that-L« depends on Re* as well as on r« 

unless Ref is large.  This result is illustrated by the profiles 
for Ref • 25, 100, and 200 in figure 8. 

For large Ref the quantity (1 + Reff2) is approximately 
equal to Reff2 for all ri > r« 
Therefore, for large Ref (60) 

I —4> w 
except at T| - 1, where f2 - 0, 
becomes 

i. 
A> 

+.1V*-   l (61) 

As indicated by the discussion following equation (48), the last 
term of (61) becomes negligible for large Ref.  Consequently, 
for large Ref (61) becomes 

l-<k> _. 

or , in the usual form. 

U.* (62) 

Equation (61) is the velocity defect formula (ref. (1)).  Its 
derivation indicates it to be valid only for sufficiently large 
Reynolds numbers.  The indication from figure 8 is that (62) is 
valid for the two largest values of Ref. 
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The present analysis yields the velocity defect formula and 
the law of the wall.  Explicit expressions for two portions of 
the law of the wall, namely, the laminar sublayer and the loga- 
rithmic portion are obtained.  Both the velocity defect and the 
loearithmic formula require a sufficiently Iprge Reynolds number 
and, in addition, the logarithmic formula requires that Jl_ be 
almost unity. «w 

It is remarked that although ou/ is the same function of y+ 
for both pipe and plate flow and ^p. is the same function of n LUJ" 
for n less than about .2, the shepx ratio IP pot. 
distribution in a pipe is 

rw  l  r 
rather than the distribution shown In figure 1. 

The shear 

the law of the wall, which was obtained by requiring that 'r 
Consequently, 

be almost unity, should not extend out as far from the wall for 
pine flow as for plate flow (see p, 517 of ref. (1)).  Moreover, 
for most of the range of i"i for which the velocity defect law 
holds, both is and JL are different for pipe than for plate flow. 

Thus, -jjjj-  in a pipe remains equal almost to its maximum value 
out to large values of i instead of dropping to zero. 
Consequently, the velocity defect formula should be different 
for pipe than for plate flow (ref. (1)). 

Heat-Transfer Coefficient and Temperature Profile 

The ratios 7— and "EZ     are shown in figure 14.  For equal 
Rep, the ratio i*i  Is larger than ^-r because V^ Is an average 
of sgi (see eq. (34)) and thus Includes the larger values of ■=££ 
that are present at low values of Rep.  Also shown in figure 14 
Is the line 

the commonly accepted ratio (p. 497, ref. (2)).  The present 
analysis results In a ratio ^ or TSr that ls larger than 
pr-2/3 at 2.0W Reynolds numbers and smaller at high Reynolds 
numbers.  The behavior at very large Reynolds numbers is obtained 
from (31) .  For large Reynolds numbers (31) becomes 

(63) 
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or, after taking-3^ - 

equation (63) becomes 
.S3. 

1   for   Ti <   .01  and  f2 Kr| for 

dy+ ^ 

s^Tn    T^. J i fy/, ?r   4.l^TV?-   J I+-fe,1^^^(64) 

For Pr - .738, calculations gave 
The last Integral is equal to 

A Hü 

IS. 6 A 

< n < .01, 

I 

for the first integral. 

/ 

K^Tr 
+- 

.Ol 
'1 -f 

-f- 
4- ^u^^Pr ^ 

which, for large Re* is equal to 
I""6, (7.»f 

for Pr - .738.  The wuxuu, 4.ux j.ai KC nsf its equai. to     g,,,  ror ^r - , iöa.      rne 
second integral is integrated analytically.  Equation (64) then 
becomes 

or, for .OIK Re Pr » 1, 

^.S4 IvTSe, +- 5.Ö-» 

When   (50)   Is used forj|c^72?   the  result   is 

*]      (65) 

-ZJt 
(66) 

For very large Reynolds numbers (66) becomes 

-^--1 (67) 

The result that the ratio -^   approaches unity does not depend 
on the value of K or of Pr.  Because of the logarithm in the 
numerator and denominator of (66), the ratio approaches unity 
very slowly.  For example, for Re* - lOlO  ^St. - 1.053. 1     ^r 

From equations (13) and (37) it follows that if ^ Pr - 1 
for all T), then „ c -. "^ 

-fc _ ^^t^r 

or, because t 4> - 1 at in - 1 

26 



NOLTR  63-77 

This  also follows   from   (5)    and   (30).     Therefore,   the  velocity 
and  temperature profiles are identical  when i^tPr -   1  for  all   n« 
Because %^ depends on   n this cannot  be   so.     Consequently,   even   if 
-^     - ^   and  Pr   - 1   the velocity  and  temperature profiles  are 
not   identical. 

For   laminar   flow,   it  follows from 

from   (16)   and   (30)   that 
2 St __ _i_ 

Or FV- 

t i 
IW 

6 
■v %7  - 0,   and 

(68) 

The  correct result   (ref.   (2))   is that 

Z.St _ 2. 

- Tr (69) 

£^ 
A comparison of equation (16) with equation (30) for "TT - 0, 
indicates that the cause of the error Is the assumption that 
"^"w " ^L »  "f" should depend on Pr.  Thus, it can be shown 

from pages 120 and 313 of reference (2) that for laminar flat- 
plate flow 

>d4K. = 3^2. 

and that 

J  f^irF**  ::'::~ 53^ T. (70) 

The quantity Pr"^/^ in (70) accounts for the difference between 
(68) and (69).  The inference is therefore that the effect of 
Pr on the ratio 2§£   in the present analysis is inexact.  When 

Cf 
the Prandtl number is near unity the error is small.  Thus, for 
Pr - .738, the error in (68) is about 12 percent. 

Results similar to those obtained for the velocity profiles 
follow for the temperature profiles.  Thus, very close to the 
wall, fi « 1 and -3- ^ 1.  Equation (38) then becomes 

■fc = 1- (71) 
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Define  the  quantity  t«   as 

^=   - 
CBIA, fCP 

— ^   /       - 
(see  ref.    (11),p.   823) 

Equation (71) then becomes 

where (72) 

This Is the linear portion of the temperature profile very close 
to the wall. 

The turbulent shear Is equal to the laminar shear where 
y+ti   Is equal to unity.  This occurs at about y. - 9.9.  From 
the denominator of the first Integral of (38) It follows that 
the turbulent heat-transfer Is equal to the laminar where 
y+fiPr equals unity.  For Pr < 1, the so-called edge of the 
laminar temperature layer Is larger than the edge of the laminar 
velocity layer.  Thus, for Pr - .738 the edge of the temperature 
laminar sublayer is at about  V-t-- 11.4, a value slightly 
larger than the value of about 9.9 for the velocity layer. 

approx 
For y+ too large for (72) but small enough for -zr, to be 
ximately equal to unity, (38) becomes 

then 

-t^TV^Cv^P.) (73) 

Equation (73) is the law of the wall for the temperature pro- 
file.  Like the law of the wall for the velocity profile, its 
upper limit is either the upper limit for fj. or for-3- ■> 1, 
whichever is smaller. "w 

For the range of n for which (12) is valid, (38) can be 
written as 

-t = 
^'^ 

* 
KGrF^ |  l+K^'gJr £^A(74) 

1?er (%'-\^ 
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For large enough Ref, "^  Is almost unity up to values of r] 
large enough to Include the upper limit for (12), which is at 
about .06.  Figure 12 indicates that for ri between zero and 
about .06, €w ±3  almost unity.  Therefore, (74) can be written 
as        ^^ 

6i 

(75) 4,- VFW    <%   -f- S^^Tr / ■     ^       — 
ISA 

The first Integral in (75) has the value 15.88 for Pr " .738. 

A 
1   l-f-K^e^ ^73ä)J| 

Equation (75) then becomes 

St- ir = /Ml f¥      K/I1 ,h L 
or 

or,   with  K  -   .393   and Pr  -   .738, v. K^    >.       y 

Equation (76) is the logarithmic temperature profile.    ¥ 

A temperature defect formula can be obtained by writing 
(38) for rt - 1, thus 

When (38) is subtracted from (77), the result is 

—t ■= 5VK5P
,
I-'R- 

-t 
\ i ♦'MA* 

or 
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or,   after  vising  the  definitions   of   ts   t* 

Te-T - T$e. Pr i 
and Kef, 

(78) 

The indication from (78) is that' 7  depends on Ref and Pr as 
well as on n.  For large Ref, however, (78) becomes 

where (1-A) is the upper limit of the range of ri in which 
"T^.-fc ^ix Pr is much larger than unity.  For very large Ref, the 

last terrain (79) becomes negligible and (79) becomes 

!e^'       ' ' " ' (80) 

) 

= -f,o^) 
Equation (80) is a temperature defect profile.  The velocity 
defect profile (eq.   (6*?)) requires only a sufficiently large 

nt, (80) requires that 3- 
cause Tp Is known to depend 

probably also does (see p. 552, ref. (1)), 
equation (80) should more properly be written as 

Mass-Transfer Coefficient and Concentration Profile 

Ref.  In addition to this requireme 
and -J^I both depend on r)  alone.  Bee 
on Pr and because 5* 

(81) 

The case treated corresponds to a turbulent boundary layer 
composed of two species flowing over a plate on which one of the 
species, say Sj, is condensing or evaporating.  The concentration 
of Si is supposed to be so small that the velocity at the wall 
caused by the evaporation or condensation of Sj^ Is not large 
enough to make the concentration profile differ from the shear 
or heat-transfer profile for vw - 0.  If C^ is the concentration 
of the evaporating or condensing species, vw is given by 

^-&¥t-l     (M >oi rc-f c) 
or 

^  _ 

Ue -^e* 
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All   the  results obtained  for  the temperature profiles  and 
heat-transfer  coefficients can be converted   to the same  results 
for  the concentration profiles  and mass-transfer   coefficients by 
making  the  substitutions 

*t-**c 

Pr-*SC 

eh^-Ed 

q—». mi 

k-—pD 

e   Ae 

Tw—Cx w 

and 

S*.—Cm z       m 

Cp—1 

t«—§. 

?* --^1* where 

CONCLUDING REMARKS 

It has been shown that the friction coefficient for a con- 
stant property, zero pressure gradient, turbulent boundary layer 
can be calculated over the entire range of Reynolds nuraberp by 
one method.  The method is to use the relation between the local 
shear, the local sum of the molecular and eddy viscosity, and 
the local velocity gradient.  The eddy viscosity across the 
boundary layer is obtained by Joining a distribution for the 
wall region to one for the outer region.  The same procedure 
yields the velocity profile from the wall to the outer edge of 
the boundary layer without using the concept of laminar sublayer, 
transition region, logarithmic region, etc. 

The heat and mass-transfer coefficient and the temperature 
and concentration profile are calculated by a similar method. 
More approximations, however, are used than to calculate the 
friction coefficient and velocity profile.  Therefore, these 
results are probably not as accurate as those for the velocity 
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boundary layer.  For example, although the calculated friction 
coefficient, Cf/2, agrees closely with accepted values, the 
ratio *»£. differs slightly from the accepted value, Pr-2'3, 
decreases with increasing Reynolds number. 

and 
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TABLE   I 

Limit   of  Wall  Region   and  Associated Eddy Kinematic   Viscosity 
Reynolds Number  For Three   Friction Reynolds Numbers 

Ref \ u*yJ i y+.l 

25 .127 12.2 
100 .253 26.6 
200 .318 37.6 

.0615 .487 

.0672 .266 

.0598 .188 
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TABLE II 

Friction Coefficient and Boundary Layer Reynolds Number 
~  for s^x Friction Reynolds Numbers 

Ref 

25 
100 
200 

2,960 
22,400 

500,000 

Cf/2 

.0116 

.00378 

.00280 

.00143 

.000987 

.000633 

Re6 

2.32 
1.62 
3.78 
7.81 
7.13 
1.99 

102 
103 

103 

10* 
105 
107 
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TABLE   IV 

Computed  Values of y 5* and 
jfor Six Friction Reynolds mimpers 

Bef 

25 
100 
200 

2,960 
22,400 
500,000 

r 
.119 
.118 
.117 
.102 
.0922 
.0791 

r 
.269 
.211 
.189 
.138 
.119 
.0954 

^ 
Roe  x  10-3 

2.25 .0277 
1.79 .191 
1.61 .444 
1.35 7.98 
1.29 65.7 
1.21 1571. 
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TABLE   V 

Limit   of Wall   Region  and Associated Eddy Thermal 
Dlffuslvlty Reynolds  Number for  Three Friction- 

Reynolds lumbers       ——— 

Rd (u.yj y+.2 ijS^t/^mJ ^2 

25 
100 
200 

.140 

.266 

.328 

13.2 
28.4 
39.0 

.0736 

.0750 

.0639 

.528 

.284 

.195 



NOLTR 63-77 

TABLE VI 

Local Stanton Number, Ratio of Stanton Number to Friction 
(Joemcient, and Boundary-Layer Momentum Thickness 
Reynolds Number for Six Friction Reynolds Numbers 

Re« 

25 
100 
200 

2,960 
22,400 

500,000 

2S. 

.0148 

.00463 

.00339 

.00164 

.00110 

.00069 

Cf 

1 28 
1 22 
1 21 
1 14 
1 12 
1 09 

Re9 x IO-" 

7 
65 

1571 

.0277 

.191 

.444 

.98 

.7 
• 
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